Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Metabolites ; 14(4)2024 Mar 28.
Artículo en Inglés | MEDLINE | ID: mdl-38668319

RESUMEN

Little is known about lipid changes that occur in the setting of metabolic-dysfunction-associated steatotic liver disease (MASLD) regression. We previously reported improvements in hepatic steatosis, de novo lipogenesis (DNL), and metabolomic profiles associated with oxidative stress, inflammation, and selected lipid metabolism in 40 adolescent boys (11-16 y) with hepatic steatosis ≥5% (98% meeting the definition of MASLD). Participants were randomized to a low-free-sugar diet (LFSD) (n = 20) or usual diet (n = 20) for 8 weeks. Here, we employed untargeted/targeted lipidomics to examine lipid adaptations associated with the LFSD and improvement of hepatic steatosis. Our LC-MS/MS analysis revealed decreased triglycerides (TGs), diacylglycerols (DGs), cholesteryl esters (ChE), lysophosphatidylcholine (LPC), and phosphatidylcholine (PC) species with the diet intervention (p < 0.05). Network analysis demonstrated significantly lower levels of palmitate-enriched TG species post-intervention, mirroring the previously shown reduction in DNL in response to the LFSD. Targeted oxylipins analysis revealed a decrease in the abundance of 8-isoprostane and 14,15-DiHET and an increase in 8,9-DiHET (p < 0.05). Overall, we observed reductions in TGs, DGs, ChE, PC, and LPC species among participants in the LFSD group. These same lipids have been associated with MASLD progression; therefore, our findings may indicate normalization of key biological processes, including lipid metabolism, insulin resistance, and lipotoxicity. Additionally, our targeted oxylipins assay revealed novel changes in eicosanoids, suggesting improvements in oxidative stress. Future studies are needed to elucidate the mechanisms of these findings and prospects of these lipids as biomarkers of MASLD regression.

2.
Hepatol Commun ; 8(3)2024 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-38407264

RESUMEN

BACKGROUND: Metabolic dysfunction-associated steatotic liver disease (MASLD), formerly known as NAFLD, is the most common liver disease in children. Liver biopsy remains the gold standard for diagnosis, although more efficient screening methods are needed. We previously developed a novel NAFLD screening panel in youth using machine learning applied to high-resolution metabolomics and clinical phenotype data. Our objective was to validate this panel in a separate cohort, which consisted of a combined cross-sectional sample of 161 children with stored frozen samples (75% male, 12.8±2.6 years of age, body mass index 31.0±7.0 kg/m2, 81% with MASLD, 58% Hispanic race/ethnicity). METHODS: Clinical data were collected from all children, and high-resolution metabolomics was performed using their fasting serum samples. MASLD was assessed by MRI-proton density fat fraction or liver biopsy and cardiometabolic factors. Our previously developed panel included waist circumference, triglycerides, whole-body insulin sensitivity index, 3 amino acids, 2 phospholipids, dihydrothymine, and 2 unknowns. To improve feasibility, a simplified version without the unknowns was utilized in the present study. Since the panel was modified, the data were split into training (67%) and test (33%) sets to assess the validity of the panel. RESULTS: Our present highest-performing modified model, with 4 clinical variables and 8 metabolomics features, achieved an AUROC of 0.92, 95% sensitivity, and 80% specificity for detecting MASLD in the test set. CONCLUSIONS: Therefore, this panel has promising potential for use as a screening tool for MASLD in youth.


Asunto(s)
Antifibrinolíticos , Enfermedad del Hígado Graso no Alcohólico , Adolescente , Masculino , Humanos , Niño , Femenino , Enfermedad del Hígado Graso no Alcohólico/diagnóstico , Estudios Transversales , Metabolómica , Biopsia
3.
Hepatol Commun ; 7(11)2023 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-37930128

RESUMEN

NAFLD, or metabolic dysfunction-associated steatotic liver disease, has increased in prevalence hand in hand with the rise in obesity and increased free sugars in the food supply. The causes of NAFLD are genetic in origin combined with environmental drivers of the disease phenotype. Dietary intake of added sugars has been shown to have a major role in the phenotypic onset and progression of the disease. Simple sugars are key drivers of steatosis, likely through fueling de novo lipogenesis, the conversion of excess carbohydrates into fatty acids, but also appear to upregulate lipogenic metabolism and trigger hyperinsulinemia, another driver. NAFLD carries a clinical burden as it is associated with obesity, type 2 diabetes, metabolic syndrome, and cardiovascular disease. Patient quality of life is also impacted, and there is an enormous economic burden due to healthcare use, which is likely to increase in the coming years. This review aims to discuss the role of dietary sugar in NAFLD pathogenesis, the health and economic burden, and the promising potential of sugar reduction to improve health outcomes for patients with this chronic liver disease.


Asunto(s)
Diabetes Mellitus Tipo 2 , Enfermedad del Hígado Graso no Alcohólico , Humanos , Diabetes Mellitus Tipo 2/epidemiología , Diabetes Mellitus Tipo 2/etiología , Azúcares de la Dieta/efectos adversos , Azúcares de la Dieta/metabolismo , Enfermedad del Hígado Graso no Alcohólico/etiología , Enfermedad del Hígado Graso no Alcohólico/genética , Obesidad/complicaciones , Calidad de Vida , Azúcares
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...